

Addressing Bicycle-Vehicle Conflicts with Signal Control Strategies

Michael Williams, Andy Kading, Dr. Sirisha Kothuri, Dr. Chris Monsere all of Portland State University; Dr. Edward Smaglik, Northern Arizona University; Dr. Krista Nordback, University of North Carolina

Objective: Compare Delay and Safety Characteristics of Four Signal Strategies Used to Reduce Bicycle-Vehicle Conflicts

Method: Using Vissim simulation, compare the cyclist and vehicle delay of 4 signal strategies intended to reduce the incidence of right-hook crashes.

Base Case –
Concurrent Phases

LBI - Leading Bicycle Interval (MassDOT 2015)

Split LBI – Split Leading Bicycle Interval (MassDOT 2015)

EBP - Exclusive Bicycle Phase (MassDOT 2015)

Movement	Bureac	EEP	% DIT
EB TH	17.2	21.7	26%
EB RT	6.2	5.6	7%
EB LT	62.5	74.5	19%
WB TH	25.3	21.2	16%
WBRT	22.2	19.3	-1366
WB LT	52.2	56.3	8%
SB TH	34.1	35.2	3%
SB RT	8.1	6.1	-1%
SB LT	54.8	65.8	20%
NB TH	37.1	37.6	1%
NB RT	7.4	7.8	8%
NB LT	53.1	54.7	3%

Bicycle Delay Results, EBP					
Movement.	Bouse	EBP	% DIF		
EB TH	22.2	45.6	106%		
EB RT	6.0	6.8	-25%		
EB LT	42.7	85.5	100%		
WBTH	17.8	44.7	152%		
WBRT	22	14.3	606%		
WBLT	29.3	40.8	39%		
SB TH	33.3	30.6	-8%		
SB RT	0.0	0.8	-		
SB LT	0.0	0.0	-		
NB TH	35.4	25.7	-27%		
NE RT	3.2	3.3	1%		
NB LT	54.6	50.7	-7%		

Conclusion

Compared to the Base Case – Concurrent Phases:

- 1. LBI resulted in zero cyclist delay and a vehicle delay equal to the LBI duration,
- 2. Split LBI resulted in zero cyclist delay and a vehicle delay of ~ .5 second,
- 3. EBP generated significant delays for both cyclists and vehicles.

Future Work

Assess safety characteristics of the four strategies via surrogate safety measures drawn from video of intersections where the signal strategies have been implemented.