Content Type: News Item

Traffic congestion on urban roadways can influence operating costs and cause travel delays.

Portland State University master’s students Nicholas Stoll and Travis Glick will present a paper introducing solutions for locating the sources of congestion at the 2016 annual meeting of the Transportation Research Board.

With their faculty advisor, Miguel Figliozzi, Stoll and Glick looked into using bus GPS data to identify congestion hot spots.

By using high-resolution GPS data to visualize trends in bus behavior and movement, the researchers were able to examine the sources of delay on urban arterials.

These visualizations, which can be in the form of heat maps or speed plots like the one shown here on the right (an application of numerical method applied to a 2,000 ft segment of SE Powell), can be used by transportation agencies to identify locations where improvements are needed. For example, adding a queue jump lane at a congested intersection can improve flow.

The researchers used fine-grained bus data provided by TriMet to create the visualizations. Buses have been used as probes to estimate travel...

Read more
Content Type: News Item

A project led by Portland State University researchers Chris Monsere and Miguel Figliozzi has been nationally recognized as one of sixteen high value research projects by the American Association of State Highway and Transportation Officials (AASHTO).

Each year at its annual meeting, AASHTO's Research Advisory Committee selects four projects from each of its four regions to form a "Sweet Sixteen" group of important and influential projects.

The project, “Operational Guidance for Bicycle-Specific Traffic Signals,” reviewed the current state of practice for bicycle signals and evaluated cyclist performance characteristics at intersections. The research has been used to inform an FHWA Interim Approval for bicycle signals.

Bike signals are beginning to be common in major cities throughout the U.S., with some engineering guidance available from the California Manual on Uniform Traffic Control Devices, the...

Read more
Content Type: News Item

A new study led by Miguel Figliozzi of Portland State University provides a microscopic evaluation of how two advanced traffic control technologies work together.

Powell Boulevard, an east-west arterial corridor in southeast Portland, Oregon, has been the focus of several research studies by Figliozzi’s TTP research lab. The street is a key route for public transit buses as well as pedestrians and cars, but heavy traffic at peak hours often results in delays.

On Powell there are two systems operating concurrently: a demand-responsive traffic signal system called Sydney Coordinated Adaptive Traffic System (SCATS) and a Transit Signal Priority (TSP) system. The TSP in the Portland metro region is designed to give priority to late buses and to boost transit performance.

In previous studies Figliozzi’s lab has analyzed a multitude of factors on Powell Boulevard including traffic congestion, transit times, air quality and cyclists’ intake of air pollutants, and a before/after evaluation of SCATS.

For this study, the researchers used a novel approach to evaluate how well SCATS and TSP work together by integrating three major data sources and video recordings at individual intersections.

Figliozzi’s team worked closely with TriMet and the City of Portland to...

Read more
Content Type: Professional Development Event

Watch video

View slides

Active travel such as walking and bicycling can lead to health benefits through an increase in physical activity. At the same time, more active travelers breath more and so can experience high pollution inhalation rates during travel. This webinar will review the state of knowledge about how roadway and traffic characteristics impact air pollution risks for bicyclists, including the latest PSU research quantifying bicyclists' uptake of traffic-related air pollution using on-road measurements in Portland. The PSU research team including Alex Bigazzi, Jim Pankow, and Miguel Figliozzi quantified bicyclist exposure concentrations on different types of roadways, respiration responses to exertion level, and changes in blood concentrations of pollutants. Implications for planners, engineers, and policy-makers will be discussed, including guidance for more pollution-conscious bicycle network planning and design. Additionally, ways for individual travelers to reduce their air pollution risks will be discussed.

This 60-minute webinar is eligible for one hour of training which equals 1 CM or 1 PDH. NITC applies to the AICP for Certification...

Read more
Content Type: News Item

Bryan Blanc will present findings at TRBA study showing surprisingly high numbers of pedestrians using a congested suburban intersection draws national attention as its researchers present their findings at the annual meeting of the Transportation Research Board Jan. 11-15 in Washington, D.C. The number of pedestrians was recorded, not with a specialized counting machine, but using the technology that was already in place at the intersection.

Knowing how many travelers use a transportation system is important for a number of reasons. Engineers and planners need to be able to estimate travel demand, and to do so they typically count the vehicles. Annual average daily traffic (AADT) counts have been collected for decades in the United States. 

In recent years the demand has increased for non-motorized counts. For a multi-modal transportation system it is just as essential to know the number of road users who aren’t in vehicles, but traveling by bicycle or on foot. This research offers DOTs an approach for counting these travelers that doesn’t require...

Read more
Content Type: Professional Development Event

Watch video

View slides

ORcycle is a new smartphone application (for both Android and iOS) developed by Transportation, Technology, and People (TTP) lab researchers at Portland State University as part of an Oregon Department of Transportation (ODOT) research project. ORcycle collects user, route, infrastructure, crash, and safety data. ORcycle was successfully launched in early November 2014 and presents many improvements over existing or similar apps. Initial data findings and insights will be presented. Lessons learned as well as opportunities and challenges associated with smartphone data collection methods will be discussed. More information about the app can be found here: http://www.pdx.edu/transportation-lab/orcycle

Dr. Miguel Andres Figliozzi's main teaching and research areas include air quality and emissions modeling, electric and new vehicle technologies, freight and logistics, bicycles,...

Read more
Content Type: Professional Development Event

Watch video

View slides

Health risks associated with air pollution uptake while bicycling are often cited as a potential drawback to increased bicycling in cities. This seminar will provide an overview of how roadway and travel characteristics impact bicyclists' uptake of traffic-related air pollution. Specific considerations for planners and designers of urban transportation systems to mitigate risks for travelers will be discussed. In addition, the extent to which bicyclists themselves can unilaterally reduce their pollution uptake will be described. This seminar synthesizes findings from a recently completed doctoral dissertation at Portland State University and from the broader literature.

Alex Bigazzi recently completed his Ph.D. in the Department of Civil and Environmental...

Read more
Content Type: Professional Development Event

The video begins at 1:09.

Content Type: Professional Development Event

The video begins at 1:49.

Abstract: Policy-makers, researchers, and activists often assume that traffic congestion mitigation results in reduced motor vehicle emissions without proper justification or quantification. This research investigates under which conditions that assumption is valid by comparing trade-offs between increased efficiency and induced travel. Analyses include investigation of varying vehicle fleets - including advanced-drivetrain vehicles. Results demonstrate that higher levels of congestion do not necessarily increase emissions, nor will congestion mitigation inevitably reduce emissions. These results apply for both roadway capacity expansions and traffic flow improvement projects. We compare the emissions effects of various congestion and emissions mitigation strategies, with particular attention to the roll of trucks and the potential of truck-only facilities. Congestion performance measures are also compared for applicability to emissions trends.

Content Type: Professional Development Event

The video begins at 0:51.

Alex Bigazzi, Miguel Figliozzi, Portland State University

Pages