EXPLORING MULTI-SOURCE TRAFFIC SENSOR DATA FOR MULTI-MODAL ARTERIAL PERFORMANCE MEASUREMENT

Xiaofeng Li
Graduate Research Assistant
xfl@email.arizona.edu

Abolfazl Karimpour
Graduate Research Assistant
karimpour@email.arizona.edu

Yao-Jan Wu, Ph. D., P.E. (Advisor) Assistant Professor
yaojan@email.arizona.edu

ABSTRACT

With the emerging development of Intelligent Transportation System (ITS) technologies, surface-transportation data can now be collected by a wide variety of ITS traffic detectors, including Bluetooth detectors, automatic vehicle location (AVL) devices, inductive loop detectors, and radar-based detectors. It has been challenging to take full advantage of multi-source ITS data by enabling them to exchange information with each other to compensate for their various disadvantages. This poster is focused on big data applications of multi-source traffic data in Tucson, Arizona. The City of Tucson is a dedicated traffic research living lab for the University of Arizona to develop data-driven applications to improve arterial performance (e.g., traffic signal timing optimization), transit system, and pedestrian and bicyclist environments.

Data Source and Collection

- Integrated Data
 - Open Big Data / Open Research
 - Integrated Solutions for the Region

- Video-based Sensors
 - Around 1,000 sensors in Tucson

- Probe Vehicle Data
 - Provide through and turning movement trajectories
 - Use trajectories to estimate travel times

- Bluetooth Data
 - General Transit Feed Specification (GTFS)

- Event-based Data
 - About 1.5 GB per day for storage

- GTFS Data
 - 49 routes in total
 - 2,310 bus stops in total
 - 2284 daily trips

Diagnosing Event-based Data

- Data quality control criteria includes:
 - Phase always-on
 - Unpaired on and off
 - Long duration
 - Two-step procedure is proposed to diagnose missing data:
 - Check data archiving statuses
 - Check data completeness for each interaction

Mitigating Missing Data of Bluetooth

- An innovative two-step approach is proposed:
 - A spatial traversal algorithm (STA) is introduced to maximize the travel time sample size.
 - Four different missing data imputation algorithms are used to obtain a complete dataset for aggregated link travel times.

Multi-Source Data Applications

- Real-Time Signal Timing Data & Video-based Sensors
 - Real-Time Queue Length Estimation
 - The vehicular queue lengths and delay can be estimated using the proposed methods with combining advance signal channel detectors with the information from upstream intersections.
 - Bandwidth Utilization
 - Real-time Signal Timing and Detector Status

- Real-Time Signal Timing Data & Video-based Sensors & Bluetooth Readers
 - Signal Timing Optimization
 - After optimizing signal timing in Speedway (Campbell-Euclid) based on multi-source data, travel time was reduced by 51%, speed was increased by 102% and the number of stops was decreased by 41%.

- Benefit Analysis
 - Assumptions:
 - Time value = $10/hour
 - Vehicle occupancy = 1.2 person/vehicle
 - Segment traffic throughput:
 - Average through volume = 1457 veh/h
 - Cost/hour = volume * vehicle occupancy * time value * travel time improvement

- System Development
 - We developed a series of practical tools and systems to collect, analyze and utilize multi-source data, including:
 - Traffic Signal Diagnosis
 - Bluetooth-based Travel Time Analysis

Acknowledgment: the authors are thankful for the support of Arizona Department of Transportation (ADOT), Pima Association of Governments (PAG), Regional Transportation Authority (RTA), the City of Tucson, Metropia and other local partners. We would also like to thank the contribution from the Smart Transportation Lab members, especially Chengchuan An, Shu Yang and Ming Chen.