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ABSTRACT 36 

Average Annual Daily Bicyclists (AADB) is commonly used in a wide range of cycling-related 37 

research and practical applications. It is generally estimated by averaging the daily cyclist totals 38 

recorded by a long-term automatic counter, or by using such a counter to extrapolate short-term 39 

counts. The latter method is commonly referred to as the expansion factor method, and has been 40 

shown to produce estimates with considerable error. To help mitigate this error, this study 41 

proposes two AADB estimation methods, one of which uses a cycling-weather model to adjust 42 

short-term counts, and one of which is based on individual daily totals from a long-term count 43 

site (as opposed to annual averages by day or by month). These methods are compared to two 44 

more traditional expansion factor methods. The weather and disaggregate methods out-45 

performed the traditional methods, with the latter producing an average absolute relative error of 46 

roughly 14% when based on just one day of short-term data.  47 

48 
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1. INTRODUCTION 49 

Average Annual Daily Bicyclists (AADB) is a valuable metric used in a wide range of practical 50 
and academic transportation applications. Among other uses, it is critical in project evaluations, 51 
such as ex-post evaluations of new cycling programs or infrastructure, safety analyses, and level 52 
of service calculations (1).  53 

AADB is typically estimated on bicycle facilities, intersections or roadways in one of two 54 
ways. The first way is to install a permanent bicycle counter, such as an inductive loop counter, 55 
for at least one year and compute the average of the daily cyclist totals. While generally most 56 
accurate, this method is both cost and time consuming. Moreover, in some locations, such as 57 
intersections, this is currently technologically unfeasible – sensors to collect automatic bike data 58 

at intersections are not commonly available in the market. Also, this requires that a counter be 59 
installed for at least one year in all locations for which an AADB estimate is desired. Hence the 60 
use of the second method, traditionally known as the expansion factor method, which is to use 61 

long-term counting sites to extrapolate short-term counts taken at other locations. Short-term 62 
counts can be obtained manually by an observer or with temporary counter installations such as 63 
pneumatic tube counters. The strategy that many cities then employ is to maintain a set of long-64 
term bicycle counters and to supplement those sites with short-term counts when AADB 65 

estimates are required elsewhere. Typically short-term counts are obtained for analyses which 66 
involve a relatively large number of sites, such as safety studies, cordon count studies, and so on 67 

(2,3).  68 
  Researchers have recently shown that AADB estimates obtained using temporal 69 

expansion factors are often inaccurate, and have tested and proposed ways to increase accuracy 70 
(4,5). Despite recent developments, proposed methods are based on aggregate factors, similar to 71 

the approach used for vehicular traffic. However, these methods do not adequately take into 72 
account the sensitivity of cyclist traffic to weather, events and other factors affecting volumes at 73 
the daily level. For example, if weather during a short-term count is poorly suited to cycling, 74 

then AADB estimates based on that count are likely to under-represent the true AADB. Methods 75 
that account directly for weather and can better accommodate daily variation deserve further 76 

research.     77 
This paper proposes two alternative AADB estimation methods that are designed to 78 

account for weather-related bias and short-term (daily) variation. The first method utilizes a 79 

model which relates deviations in daily cyclist counts from average daily counts to 80 

corresponding deviations in weather conditions. The second method is a disaggregated factor 81 

method, based on the individual daily cyclist totals from long-term counting sites.  82 
The performance (accuracy) of the proposed methods, with respect to more traditional 83 

ones, is evaluated using data from a set of long-term counting sites in two Canadian cities, 84 

Montreal, Quebec and Ottawa, Ontario.  The evaluation includes exploring how the location of 85 
the short-term count site, weather, time of the count, and duration of the count affect estimated 86 
AADB accuracy. The following section presents a short literature review on the topic, followed 87 
by the presentation of the methods, the results, and finally, the conclusions. 88 

89 
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2. LITERATURE REVIEW 90 

The most common incarnations of expansion factors today applied to bicycle data have been 91 
long-used to estimate annualized traffic for motor vehicles. Manuals like the The Federal 92 
Highway Administration’s Traffic Monitoring Guide (6) and the Road Safety Manual (7) 93 
recommends that short-term counts be extrapolated by applying a daily and monthly expansion 94 

factor to a short-term count. The daily and monthly factors are typically equivalent to the average 95 
annual daily bicyclist count for a given day of the week or month, respectively, divided by the 96 
overall AADB. If the short-term count is less than 24-hours, an hourly expansion factor is 97 
required as well.  98 
 Two recent papers have provided the most thorough, if not only, in-depth analyses of the 99 

error associated with estimating AADB. Nordback et. al. (4) used a set of counters in Boulder, 100 
CO to test the standard expansion factor method. Focused primarily on the effect of the duration 101 
of the short-term count, they determined that at least one week of counts is optimal, and that 102 

estimates based on just one, two or three hours of data had average absolute error up to 58%. 103 
They also concluded that short-term data collected in the warmer months produced lower 104 
average error due to lower variability of daily counts. Esawey et. al (5) tested several different 105 
expansion factor methods, using data from Vancouver, British Colombia to estimate monthly 106 

average daily bicyclists. Rather than utilize the traditional method of producing daily factors by 107 
averaging over the course of the year, they produced daily factors for each month individually. 108 

They concluded that weekdays provided lower average estimation errors, and recommended 109 
against transferring expansion factors across years. They also accounted for weather by 110 

producing separate sets of expansion factors for wet and dry weather, finding that this method 111 
produced the lowest estimation error.   112 

That weather has a significant impact on cycling has been well documented. A number of 113 
researchers have observed that, in general, counts increase with temperature (8,9,10,11). Several 114 
studies have found non-linear temperature effects, suggesting that the effect of temperature on 115 

cycling at warm temperatures is reduced or even negative (10,12,13). Increases in humidity have 116 
been associated with decreases in cycling (8). Precipitation is associated with decreases in 117 

cycling counts (8,9,11-13), and Thomas et. al. (10) found a non-linear precipitation effect. 118 
Furthermore, that researchers have been able to explain a considerable portion of the variance in 119 
hourly and daily cycle counts using weather and temporal factors suggests that such models 120 

could be used to adjust short-term counts based on weather conditions.  121 

 122 

123 
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3. METHODOLOGY 124 

This section introduces the steps that were followed to evaluate the four proposed AADB 125 
estimation methods. The four methods are based on the scenario in which the traffic analyst has 126 
at least one site with one year or more of daily cyclist count data, and that she or he has one or 127 
more sites with at least one 24-hour short-term count (taken within the same year as the long-128 

term data). The analyst would like to use the long-term daily count data to estimate AADB at the 129 
sites which have short-term counts. The short-term counts can come from manual data collection 130 
methods or temporary sensor installations, such as pneumatic tubes or infra-red sensors. In 131 
theory, the short-term count could be as brief as one hour and adjusted to reflect a 24-hour total. 132 
However, to simplify the scope of this paper, only methods beginning with a full 24-hour count 133 

were considered. To see a more thorough examination of methods based upon counts shorter 134 
than a full day, see Nordback et. al (4).  135 
 The four AADB estimation methods that were evaluated in this analysis are described 136 

briefly below: 137 

 Traditional Method: expansion factors for each month and day of the week are computed 138 
over a whole year of data 139 

 Day by Month Method: expansion factors for each day of the week are computed for each 140 
month separately 141 

 Weather Model Method: a model that relates deviations from average cyclist counts to 142 
deviations from average weather conditions is used to adjust short-term counts 143 

 Disaggregate Factor Method: an expansion factor is computed for each day of the year 144 
using the raw daily counts and the annual daily average.  145 

 146 
Simulating the scenario described in the first paragraph of this section consisted of the following 147 

steps: 148 
 149 

1. Long-term automatic counting stations in both Montreal and Ottawa were split into those 150 

that would represent long-term count sites and short-term count sites, dubbed throughout 151 
the rest of this text as long-term test sites and short-term test sites, respectively. Of eight 152 

total stations in Montreal, one served as a long-term test site; of five stations in Ottawa, 153 
two served as long-term test sites.  154 

2. The long-term test sites were used to develop the frameworks for each of the four AADB 155 

estimation methods.  156 
3. For each short-term test site, the four estimation methods were applied in turn to each 157 

individual day of count data to estimate AADB. AADB was estimated separately for each 158 
year of available data at a given short-term test site.  159 

4. The estimated AADB values were compared to the observed AADB values to evaluate 160 
and compare the accuracy of the four estimation methods.  161 
 162 

An overview of the study locations and data is presented first. Next, the development of the 163 
weather model, which will be used in one of the AADB estimation methods is discussed, 164 

followed by a detailed description of each of the four AADB estimation methods. Finally, the 165 
manner in which the accuracy of the estimation methods will be compared is discussed.  166 

 167 
 168 
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3.1. Study Locations  169 
The locations of the long-term and short-term test sites are shown in the maps in Figure 1, and 170 
the nearest intersection, along with other brief summary information, is provided in Table 1. 171 
With the exception of M_S5, which is located on a grade-separated cycling facility, all of the 172 

counter locations in Montreal are on on-street cycling facilities. With the exception of M_S7, 173 
which is on a unidirectional bike lane, all are bidirectional and physically separated from traffic. 174 
In Ottawa, the Laurier counter locations are on paired unidirectional, on-street bike lanes and the 175 
Rideau Canal counters are on grade-separated, bidirectional pathways.  176 

Montreal has seven short-term test sites and one long-term test site, which was selected 177 

because it had the most contiguous period of reliable data. Ottawa has two short-term test sites 178 
on Laurier, which are associated with a long-term test site also on Laurier, and one short-term 179 

test site on the Rideau Canal path, paired with a long-term test site along the same path. The 180 
short-term test sites were paired with separate long-term test sites to examine the performance of 181 
the estimation methods at sites located at varying lengths along the same corridor. Associated 182 
long-term and short-term test sites are shown with symbols of the same shade in Figure 1.  183 
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 184 
Figure 1. Montreal and Ottawa bicycle counter locations 185 
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3.2. Data 186 
 187 
Bicycle Data 188 

All of the bicycle data used in this study was obtained from inductive loop bicycle counters 189 
manufactured by Eco-Counter. Data from this equipment has been used in a wide range of 190 

studies, and when operating properly, the absolute error of these counters has been shown to be 191 

below 4% (8,13,14).  192 

Weather Data  193 

Weather data, used in the development and application of the weather model and in the analysis 194 

of the average absolute error of the estimation methods, were obtained from Environment 195 
Canada weather stations. The Montreal and Ottawa weather data came from the McTavish and 196 

Ottawa CDA weather stations, respectively, both of which are within 5 kilometers of all of the 197 

bicycle counter locations.  198 

Data Processing  199 

Because some of the bicycle counters are located on facilities that are not maintained in the 200 

winter, their count data becomes unreliable in the colder months. Therefore, to be consistent 201 
across as study locations, data from December through March were excluded from the analysis. 202 
The AADB values utilized throughout this study effectively average seasonal daily values. This 203 
is however still a useful metric for bicycle studies, and the methods presented here could easily 204 
be extended to full years if data are available. Furthermore, holidays were removed, resulting in a 205 

loss of roughly 2% of the data. The irregularity of traffic on holidays makes them difficult to 206 
include in the calibration and application of the weather models, and it was decided that they 207 

could be removed without significantly affecting AADB estimates. Finally, the datasets were 208 
combed thoroughly to identify missing data, which can be caused by counter malfunction, 209 
construction detours, and so on. This resulted in the loss of another 2.7% and 4% of daily 210 

observations in Montreal and Ottawa, respectively.  211 
If more than a few days were missing over the course of a season, the entire year was 212 

discarded, as the observed AADB could not reliably be obtained. Because the number of missing 213 
days in each season was small, missing data were not estimated. The available years of data for 214 

each site are provided in Table 1. Again, for each short-term site, each year was treated 215 
separately, resulting in 19 test years. AADB was estimated for each year four ways, resulting in 216 
76 different estimates. For reference, the observed AADB values computed over each site’s full 217 
dataset is also provided in Table 1.  218 

 219 

220 
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Table 1. Short-Term and Long-Term Test Sites 221 

Type Name* Location Years with Data AADB 

Long-Term M_L1 Maisonneuve at Berri 2008-2012 4429 

Short-Term M_S1 Berri at Maisonneuve 2008 - 2010, 2012 3390 

Short-Term M_S2 Brebeuf at Rachel 2011 2789 

Short-Term M_S3 Cote St. Catherine at Mceachran 2012 1662 

Short-Term M_S4 Maisonneuve at Peel 2008, 2010-2012 2176 

Short-Term M_S5 Parc at Duluth 2011, 2012 2420 

Short-Term M_S6 Rachel at Papineau 2012 3838 

Short-Term M_S7 St. Urbain at Mt. Royal 2008 - 2010 1917 

Long-Term O_L1 Laurier at Lyon 2012 1015 

Short-Term O_S1 Laurier at Metcalfe 2012 1437 

Short-Term O_S2 Laurier at Bay 2012 418 

Long-Term O_L2 Rideau Canal Western Pathway at First  2012 1210 

Short-Term O_S3 Rideau Canal Eastern Pathway by Laurier 2012 1181 

*In each name, L and S correspond to long-term and short-term test sites, respectively 222 

3.3. Weather Model Formulation 223 
As noted earlier, in addition to temporal factors, weather can have a significant effect on bicycle 224 

traffic volumes, which can in turn have a large effect on AADB estimates. In an attempt to 225 
account for that effect, a model was developed which relates deviations in daily cyclist totals 226 

from the average daily total to respective deviations in daily weather conditions from average 227 
conditions. If a researcher knew that weather conditions on the day of a given short-term count 228 

were better or worse for cycling than average, she or he could use this model to adjust their short 229 
term count accordingly. This model will be incorporated into one of the tested AADB estimation 230 
methods presented in the following subsection. The model can be represented as follows:  231 

 232 

       (       )           (       )      , where (Eq. 1) 

       
= [       

∑    
      
      

  
]  [

∑    
      
      

  
]⁄ , the relative Daily Bicyclists deviation of 

day j in year y,  from a 21 day moving average of Daily Bicyclist totals, where j 

ranges from 1 to the number of days in the year or cycling season, 

      
= [      

∑   
      
      

  
]  [

∑   
      
      

  
]⁄    a vector of deviations in continuous 

weather variables (temperature, dewpoint, total precipitation, etc.) from their 

respective 21 day moving averages on day j in year y. (Note that although the 

normalized version is shown above, these variables may or may not be 

normalized) 

     = a vector of continuous weather conditions on day j in year y,  
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      = a vector of binary variables related to temporal effects, like the day of week on 

which day j falls, 

             = vectors of coefficients to be estimated from the data, and  

     = a random, independent error term for day j in year y.  

 233 
Linear regression was used to calibrate the model coefficients. Multi-collinearity was checked to 234 
ensure that variables with correlation coefficients with absolute values greater than 0.5 were not 235 
included in the same model.  236 

Note that Miranda-Moreno and Nosal (8) developed a similar model, but they calculated 237 

average cycling and weather values by month. It was found here that the 21-day moving average 238 
produced a better fit. Also note that because the response of cycle counts to weather conditions 239 

varies between weekdays and weekends (13), the model coefficients were calibrated using only 240 
weekdays. Therefore, since the average values were computed using all days, the model relates 241 
deviations in weekday cycle counts from the overall average to deviations in weather conditions.  242 

 243 

3.4. AADB Estimation Methods  244 
The first two methods are based on those described in the Federal Highway Administration’s 245 

Traffic Monitoring Guide (6), and account for temporal variation only. The third and fourth 246 
methods are similar, but attempt to control for both temporal and weather-related variation. Note 247 

that although the AADB values reflect bicyclist counts on all days, only weekdays were used to 248 
estimate AADB.  249 

 250 

Traditional Method 251 

 252 
This method accounts for daily and seasonal variation in traffic volumes with individual factors 253 

for each day of the week, averaged over the whole season or year, and for each month. It has 254 

been widely used to annualize both motor vehicle and bicycle and pedestrian traffic counts.  255 

    ̂̂                    
   

⁄       
⁄  , where (Eq. 2) 

    ̂̂    = the estimated AADB for short-term site i, and year y, based on the short-term 

count taken on day j, which ranges from 1 to the number of days in the cycling 

season or year, 

            = the observed Short-term Daily Bicyclists at short-term site i on day j in year 

y,  which falls on day of the week d in month m,  

    = the Day-of-the-week Factor for day of the week d.   

    = the Month Factor for month m.  

 256 
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Both     and     are calculated using data from a long-term test site. In this case, the     is 257 
the ratio of the average daily total cyclists on a given day of the week, d, averaged over the entire 258 

season or year, divided by the overall AADB.     is the ratio of the average daily total cyclists 259 

in month m, divided by the overall AADB. Both     and     were calculated separately for 260 
each year.  261 

 262 

Day by Month Method 263 
 264 

This method is similar to the traditional method, but rather than account for daily and seasonal 265 

variation with separate factors, they are accounted for by computing the     separately for each 266 
month. For instance, for an 8 month cycling season there would be 56 total factors.  267 
 268 

    ̂̂                     
     

⁄ , where (Eq. 3) 

    ̂̂      = the estimated AADB for short-term site i, and year y, based on the short-term 

count taken on day j, which ranges from 1 to the number of days in the cycling 

season or year, 

             = the observed Short-term Daily Bicyclists at short-term site i on day j in year y,, 

which falls on day of the week d in month m, 

      = the Day-by-month Factor for day of the week d and month m.   

 269 

The      , again calculated using data from a long-term test site, is the average daily total 270 

cyclists for each day of the week, d, within each month, m, divided by the overall AADB.       271 

was calculated separately for each year.  272 

 273 

 274 
Weather Model Method 275 

This method attempts to account for the effect of weather on daily cyclist counts and subsequent 276 

AADB estimations by using the expected cyclist count deviation, obtained from the model 277 
described in Section 3.1, to adjust the observed short-term count. The method is executed in two 278 

steps: first, the short-term count is adjusted based on the predicted deviation from the 21-day 279 
moving average due to weather; second, the weather-adjusted count is temporally adjusted to 280 
reflect how the 21-day average varies from the AADB. The first step can be summarized as 281 

follows:  282 

    ̂                        ̂  ⁄  , where (Eq. 4) 

    ̂      = the estimated Moving Average Daily Bicyclists for short-term site i, and year 

y,  centered at day j, which ranges from 1 to the number of days in the cycling 

season or year, 
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             = the observed Short-term Daily Bicyclists at short-term site i in year y, on day 

j, which falls on day of the week d in month m.  

   ̂    = the expected deviation in daily bicyclists on day j in year y, based on the 

weather conditions on day j and obtained from Equation 1, after calibrating the 

model with bicycle data from a long-term site.   

 283 

For example, if the weather on day j was particularly well-suited to cycling,     ̂ will be 284 

positive, and the short-term daily bicyclists count,         , will be adjusted downward. The 285 

second step can be represented as follows:  286 

 287 

    ̂           ̂       
    

⁄ , where (Eq. 5) 

    ̂      = the estimated AADB for short-term site i and year y, based on the short-term 

count taken on day j, which ranges from 1 to the number of days in the cycling 

season or year, 

    ̂      = the estimated Moving Average Daily Bicyclists for short-term site i and year y, 

centered at day j, as estimated using Equation 4. 

     
= 

∑    
      
      

  
     , the Moving Average Factor, centered at day j and 

calculated using data from a long-term site.    

 288 

The coefficients of the weather model were estimated using data from the long-term sites. For 289 
Montreal, all 5 years of data were used to calibrate one model. If a contiguous section of data 290 

was missing, then a section spanning from ten days before to ten days after the missing data was 291 
excluded. If a single day was missing, then only twenty days were used to calculate the moving 292 
average, when applicable.  293 

 294 

Disaggregate Factor Method  295 

The disaggregate factor method is perhaps the simplest. For a long-term test site, each daily 296 
bicyclist total is divided by the overall AADB. Essentially, an expansion factor is created for 297 

each day of the year. It is expected that, as long as the long-term and short-term test sites 298 
experience the same weather, this method will account for deviations in weather conditions, and 299 

temporal factors like day of the week and month. It can be represented as follows:  300 

    ̂                 
     

⁄ , where (Eq. 6) 

    ̂      = the estimated AADB for short-term site i and year y, based on the short-term 

count taken on day j, which ranges from 1 to the number of days in the cycling 
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season or year, 

         = the observed Short-term Daily Bicyclists at short-term site i, on day j in year y,  

      =            , the Disaggregate Factor for day j in year y, where       and 

      are the total cyclists on day j in year y and the AADB, respectively, for 

the  long-term count site. Again, j ranges from 1 to the number of days in the 

cycling season.  

 301 
3.5. Evaluation of Accuracy 302 

 303 
Each day of available count data was used to estimate AADB for a given short-term test site and 304 

year. Therefore, for each AADB estimation method, each day’s estimate was compared to the 305 
observed AADB using the absolute relative error:  306 
 307 

|          |   |    ̂             |        , where (Eq. 7) 

|          | = relative absolute error for short-term site i, based on the AADB estimated on 

day j in year y, and calculated for each estimation method,  

    ̂      = the estimated AADB for short-term site i and year y, based on the short-term 

count taken on day j, which ranges from 1 to the number of days in the cycling 

season or year, 

        = the observed AADB for site i and year y.  

In the results section, unless otherwise noted, the average absolute relative errors (AARE) 308 
(averaged across all sites and years) are used to compare the accuracy of the different methods.  309 
 310 

 311 

312 
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4. RESULTS AND DISCUSSION 313 

The results of the weather model calibration are first discussed briefly, followed by the results 314 

and discussion regarding the different AADB estimation methods.  315 

4.1. Weather Model  316 

The coefficients of the weather model are presented in Table 2, along with corresponding p-317 
values and a description of each variable. All of the results related to the signs and magnitudes of 318 
the estimated coefficients are in accordance with previous research.  319 

It was found that positive deviations in temperature from the average were statistically 320 
significantly associated with increases in cyclist counts. However, this effect is tempered when 321 

the temperature is above twenty and deviations from the average temperature were positive; 322 
when it is already hot, increases in temperature make cycling less appealing.  323 

For incorporating the effects of humidity on cycling, it was found that the relative 324 
deviation in maximum daily dew point depression explained a greater amount of the variance 325 
than relative humidity. Dew point depression is the difference between the air temperature and 326 
the dew point temperature, the temperature at which water vapor will condense into a liquid. The 327 

larger the dewpoint depression, the less humid the air feels. Increases in dewpoint depression 328 
from the average were associated with increases in cyclist counts.  329 

Precipitation was entered into the model as continuous variable. Though precipitation 330 
decreases cyclist counts, a non-linear effect was observed: the magnitude of its negative effect 331 
increases less rapidly at higher levels of precipitation. To the average cyclist, the difference 332 

between no rain and light rain is greater than the difference between moderate rain and heavy 333 

rain. 334 
In addition to the weather-related variables, fixed effects for Tuesday, Wednesday and 335 

Thursday were significant, meaning that average ridership on those days varies with respect to 336 

Monday. A fixed effect for Friday was found to be insignificant. Finally, a constant was 337 
significant and had a positive magnitude. This reflects the fact that the dependent variable in this 338 

model is the deviation in daily cyclist counts from the overall average count (calculated using all 339 
days of the week), but the model was calibrated using only weekdays. Counts at locations used 340 
to calibrate this model are generally higher during the week than on the weekend.  341 

 342 

343 
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Table 2. Weather Model Coefficients - Montreal 344 
Category Variable Description Coefficient P-Value 

    

del_temp_max 
Deviation of maximum daily temperature 
from average 

0.027 0.000 

del_dpd_max 
Deviation of maximum dew point 
depression (temperature minus dew 
point temperature)  from average 

0.023 0.000 

   

temp_max _o20_pdev 

Equal to maximum daily temperature 
when maximum  temp. is above 20 °C 
and del_temp_max is positive (equal to 
0 otherwise).  

-0.0036 0.000 

(total_precipitation)
2
 

The square of total daily precipitation (in 
mm

2
).  

0.000065 0.000 

total_precipitation Total daily precipitation (in mm). -0.018 0.000 

 fmon (reference) --- --- --- 

    

ftue Equal to 1 if Tuesday, 0 otherwise. 0.12 0.000 

fwed Equal to 1 if Wednesday, 0 otherwise. 0.11 0.000 

fthu Equal to 1 if Thursday, 0 otherwise. 0.11 0.000 

 constant --- 0.17 0.000 

R
2  

=
 
0.61   

 345 

4.2. AADB Estimation  346 

With the exception of M_S7, the disaggregate method produced the lowest AARE for all sites, 347 
followed by the weather method; the traditional and day by month methods performed 348 
comparably, and produced the least accurate estimates with the highest AARE values (Figure 2). 349 

The magnitudes of the average absolute errors for the traditional method, which is the most 350 
comparable method, are in accordance with those obtained in other analyses (4,5). The rest of the 351 

results section is broken up to examine more specific factors that affect AARE.  352 

 353 
Figure 2. AARE by Estimation method and Short-Term Count Location 354 
 355 

 356 
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Location of Short-Term Site  357 

Although an in-depth analysis of the contextual factors related to each short-term site was 358 
beyond the scope of this study, some conclusions can be drawn from a basic examination of the 359 
AARE by short-term site locations. For some sites, such as M_S2, it was not possible to produce 360 
a reasonably accurate estimate with any method (Figure 2). An examination of the average daily 361 

cyclists by month reveals why this is so (Figure 3). While the monthly traffic profiles for the 362 
other two short-term sites with data in 2011, M_S4 and M_S5, closely match that of the long-363 
term site, M_L1, M_S2 has a very different ridership pattern. Although the monthly profile is not 364 
shown in Figure 3, M_S7’s low accuracy can be attributed to a similar reason. This highlights 365 
the need to determine before estimating AADB whether the long-term and short-term sites have 366 

compatible traffic patterns. This in practice can be a difficult task if the analyst is not familiar 367 
with the traffic dynamics in the different corridors of the network. How to determine whether 368 
this is the case will require much further research.  369 

The two sites with the lowest AARE are O_S1 and O_S2, which are on the same corridor 370 
as and are close to their associated long-term site, O_L1 (Figure 1; Table 1). Their AARE 371 
values for the disaggregate method are 6% and 3%, respectively. This suggests that the AADB of 372 
short-term sites on the same corridor or a corridor with similar traffic patterns as their long-term 373 

site can be estimated relatively easily with high accuracy. Again, this highlights the importance 374 
of matching sort-term sites to the appropriate permanent counting stations, in particular when 375 

they are not in the same corridor. 376 

  377 

 378 
Figure 3. Average Daily Cyclists by Month in 2011 379 
 380 

Weather Conditions 381 

For all four estimation methods, when temperatures are warmer, estimates are more accurate 382 
(Figure 4a). However, the difference between estimates obtained during colder periods and 383 

warmer periods is more pronounced for the traditional and day by month methods; the traditional 384 
method produces errors that are roughly four times lower when the temperature is above 30 than 385 

when it is less than zero.  386 
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Estimates are more accurate when short-term counts are performed during dry weather 387 
(Figure 4b). However, for the disaggregate method, the difference in accuracy is less 388 
pronounced between dry and wet weather. This makes this method particularly attractive, as it 389 
suggests that, for instance, even days on which it rained during a pneumatic tube installation 390 

could be reliably used for AADB estimation. Perhaps surprisingly, the weather method produces 391 
a relatively large difference in accuracy between wet and dry days. This suggests that further 392 
work is needed to accurately model how precipitation affects cyclist counts.  393 

This reinforces the recommendation that data collection campaigns for short-term counts 394 
ought to take place in good weather conditions and not during winter.   395 

 396 

 397 
Figure 4. Effect of Weather Conditions on AARE by AADB Estimation Method 398 
 399 

 400 

 401 
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Time of Temporary Count 402 

In general, there is not much variation in accuracy across days of the week (Figure 5A). For the 403 
traditional, day-by-month, and weather methods, it appears that Thursdays may be the best day 404 
on which to collect a short-term count. However, this may be specific to Montreal or to just this 405 
set of counters. Furthermore, as suggested earlier in this suggest, it is clear that more accurate 406 

AADB estimates are produced in the warmer months. It appears that, in this case, short-term 407 
counts taken in August produce the lowest AARE. This is in accordance with prior work (4,5) 408 

and should serve as a clear guideline for when is best to collect short-term data.  409 

 410 

 411 
Figure 5. Effect of Time of Short-Term Count on AARE by AADB Estimation Method 412 
 413 

 414 
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Duration of Count  415 

In order to test the effect of the duration of the short-term count on AARE, the AADB estimates 416 
obtained on contiguous weekdays were averaged, and the number of days was increased from 1 417 
day up to 30. For the first three methods, large gains in accuracy can be obtained by increasing 418 
the duration of the short-term count (Figure 6); increasing the count duration from one day to 419 

five can decrease the average error by roughly one-third. For the traditional and day by month 420 
methods, the error associated with a month of counts is roughly half that of a one-day count, and 421 
for the weather method, it is roughly 60%. While gains can be made for the disaggregate method, 422 
they are less pronounced; after 5 days and 30 days, the AARE is only 15% and 34% lower than 423 
the AARE associated with a one-day count, respectively.  424 

 As more days of short-term data are included, the AARE values improve in a non-linear 425 
manner. For the first three methods and the disaggregate method, roughly 75% and 60%, 426 
respectively, of the improvement to be had by adding more data has occurred by the addition of 427 

the 10
th

 day. Furthermore, the AARE values across the four methods converge as more data is 428 
added. After 10 days of short-term data collection, the weather method and the disaggregate 429 
method produce the same AARE, and after 20 days, all are essentially the same.  430 
 The results presented in Figure 6 highlight the potential advantage of the disaggregate 431 

method. On average, ten days of short-term data collection are necessary for the traditional and 432 
day-by-month methods to produce estimates which are comparable in error to one day of the 433 

disaggregate method, and 5 days of data collection are required for the weather method to do so.  434 

 435 

 436 
Figure 6. Effect of Duration of Short-Term Count on AARE by AADB Estimation Method 437 

 438 

439 
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5. CONCLUSION 440 

This paper evaluates the performance of four methods to estimate AADB from short-term 441 
counts, including two that are relatively unique. A set of long-term count sites in two Canadian 442 
cities, Montreal and Ottawa, were divided into those that simulated long-term and short-term 443 
count data sites. Using data from long-term test sites, the four methods were applied to data from 444 

the short-term test sites to estimate AADB. The accuracy of the four methods was evaluated 445 
based on the average absolute relative error between the estimated and observed AADB values. 446 

In general, it was found that the disaggregate method performs better than the other three 447 
methods, particularly when compared to the traditional and day-by-month methods. The weather 448 
adjustment method was the second best option, performing in some cases as well as or better 449 

than the disaggregate method. It was observed that the selection of the long-term location is 450 
critical; lowest error is obtained when the traffic patterns at the long and short term sites match 451 
well. This could be even more important than the selection of the factoring method.  452 

The effect of weather conditions, as well as the time and duration of the short-term count 453 
was also evaluated, and it was found that greater accuracy can be obtained by considering these 454 
factors when planning a short-term count. Short-term data collected on dry days in warmer 455 
periods, particularly in the month of August, produced the lowest error for this set of sites. 456 

Collecting data on Thursday also appears to improve accuracy slightly. Furthermore, increasing 457 
the number of days of short-term data reduces error considerably, albeit in a non-linear fashion. 458 

After around 10 days of data collection, further gains in accuracy are marginal.  459 
The weather and disaggregate methods are advantageous in that they produce more 460 

accurate AADB estimates. Because of their ability to account for weather conditions, it appears 461 
that less short-term data is needed to obtain accuracy comparable to more traditional methods. 462 

However the data needs of the weather method, and the fact that both methods are only 463 
applicable to short terms counts collected in the same year as the long-term counts, reduces their 464 
utility.   465 

Future work will include testing these methods with short-term counts less than a full day 466 
long. In addition, methods to more reliably match short-term data collection sites with 467 

representative long-term sites will be developed. Ensuring that long and short-term sites have 468 
similar traffic patterns will ensure greater accuracy. Finally, extensions of the weather model 469 
method will be developed, such as the ability to use short-term counts from different years, and 470 

the standardization of data from different years for comparative or post-project evaluation 471 

studies. 472 

 473 

474 
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