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ABSTRACT MODEL FORMULATION MODEL PERFORMANCE FOR CASE STUDY

€ Public service agencies like hospitals, fire, rescue, and police departments are required to
maintain high levels of service. These service standards often come as reliability
constraints. For example, fire-related incidents require a 90% response rate in 4 minutes.

€ Drones or Unmanned Aerial Vehicles (UAVs) are already being site-tested for delivery of
automatic external defibrillators (AEDs), medical prescriptions, and medical emergency
response as part of federal programs. We consider a case study of tackling out-of-hospital
cardiac events using AED-enabled drones in Portland Metro Area, OR-WA.

€ Travel time uncertainty in drone deliveries arise from weather conditions, mainly from
uncertainty about wind speed and direction [Glick et al. 2021]. The effect of stochasticity
in environmental factors is hard to quantify exactly, apart from being data intensive.

€ A robust optimization (RO) approach allows for incorporating uncertainty with limited
information by using uncertainty sets. Further, splitting of a planning period into multiple
smaller periods would disaggregate uncertainties and possibly aid RO in tackling them.

¥ We develop a compact mixed-integer linear programming formulation of the problem
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Objective Function:
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Due to sampling errors stemming from environmental factors like variation in travel time
distributions throughout the day, the parameter p;; is uncertain. We assume p;; is the

estimate of pj;, and p;; is the maximum deviation of p};. For our robust model, we assume
p;j € [ﬁfj — PPy + Iafj]-
Robust coverage reliability constraint for each demand point i € I and time period t € T:
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Facility opening constraint for each time period t € T
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Facility relocation budget constraint and related logical constraints:
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@ SS1: providing 90% coverage reliability in 4 min; SS2: providing 95% coverage reliability in 10 min

€® Improvements in coverage reliability (g=15; 552)
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RESULTS AND CONCLUSIONS :
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SSW - SSE SSW . SSE € Description of multiple periods: We consider a planning period of one whole year. As £
wind direction distributions are significantly different in Summer (April-September) and i N

Winter (October-March) months, these are considered as different periods. For a single-
period formulation, average data of the whole year is utilized.

I I I I I I I I I
3 6 9 12 15 20 29 30 35
q

€ Reducing the gap between model coverage and simulated coverage

MODELING COVERAGE RELIABILITY

Analysis is conducted on four types of models: multi-period robust (MP-R) which consider

€ The service standard constraint is modeled as a chance-constraint to model reliability.

Unopened
facilities

® S;: set of open facilities that can access

demand point i —a

¢ p;;: probability of failing to reach demand
point i from location j

® q;;: 1, with probability (1 — p;;), and 0,
with probability p;;

@ «: reliability standard

€ For demand point i to be covered:

Prob (z aj = 1) >«
JES;

® Assuming independence among p; ;:

PTOb(z aij21)=1—1_[ pijZa
JES; JES;

Opened

o Accessibility
facilities
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uncertainty in pfj, multi-period deterministic (MP-D) which does not consider uncertainty
in pfj, single-period robust (SP-R), and single-period deterministic (SP-D).

Computational Effort: Out of 108 models solved for different parameter combinations,
104 converged in 2 hours, and all of them converged in 8 hours. Generally, adding more
time periods is more computationally intensive than adding robustness.

Value of adding multiple periods and robustness: Utilizing a multi-period formulation is
particularly beneficial when response time thresholds are short, or uncertainty is not
accounted for. Adding robustness to deterministic formulations is more beneficial for
single-period formulations or when response time thresholds are longer. Combining
these different strengths, MP-R improves coverage by 57% compared to SP-D.

Geographical impact: Adding robustness consolidates the facilities towards the densely-
populated urban core, thereby improving reliability outcomes.

Additional considerations: Some of the gap between model coverage (coverage
promised by the model) and simulated coverage (coverage experienced during Monte-
Carlo simulations) can be reduced by either increasing robustness (also reduces model
coverage) or increasing the number of opened facilities (has additional associated costs).
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Increasing the number of opened facilities (q)
(robust models use I'}=1)
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(MP-R; g=35; SS1)
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