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ABSTRACT MODEL PERFORMANCE FOR CASE STUDYMODEL FORMULATION

◆ Public service agencies like hospitals, fire, rescue, and police departments are required to 
maintain high levels of service. These service standards often come as reliability 
constraints. For example, fire-related incidents require a 90% response rate in 4 minutes.

◆ Drones or Unmanned Aerial Vehicles (UAVs) are already being site-tested for delivery of 
automatic external defibrillators (AEDs), medical prescriptions, and medical emergency 
response as part of federal programs. We consider a case study of tackling out-of-hospital 
cardiac events using AED-enabled drones in Portland Metro Area, OR-WA.  

◆ Travel time uncertainty in drone deliveries arise from weather conditions, mainly from 
uncertainty about wind speed and direction [Glick et al. 2021]. The effect of stochasticity 
in environmental factors is hard to quantify exactly, apart from being data intensive.

◆ A robust optimization (RO) approach allows for incorporating uncertainty with limited 
information by using uncertainty sets. Further, splitting of a planning period into multiple 
smaller periods would disaggregate uncertainties and possibly aid RO in tackling them.

◆ We develop a compact mixed-integer linear programming formulation of the problem 
using polyhedral uncertainty sets [Bertsimas and Sim 2004].

◆ We analyze the value of adding robustness and multiple time periods using a novel 
Monte-Carlo simulation scheme.

MODELING COVERAGE RELIABILITY

◆ The service standard constraint is modeled as a chance-constraint to model reliability.
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◆ 𝑆𝑖: set of open facilities that can access 
demand point 𝑖

◆ 𝑝𝑖𝑗: probability of failing to reach demand 
point 𝑖 from location 𝑗

◆ 𝑎𝑖𝑗: 1, with probability (1 − 𝑝𝑖𝑗), and 0, 
with probability 𝑝𝑖𝑗

◆ 𝛼: reliability standard

◆ For demand point 𝑖 to be covered:

𝑃𝑟𝑜𝑏 ෍
𝑗∈𝑆𝑖

𝑎𝑖𝑗 ≥ 1 ≥ 𝛼

◆ Assuming independence among 𝑝𝑖𝑗:
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RESULTS AND CONCLUSIONS

◆ Objective Function:
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◆ Due to sampling errors stemming from environmental factors like variation in travel time 
distributions throughout the day, the parameter 𝑝𝑖𝑗

𝑡 is uncertain. We assume ҧ𝑝𝑖𝑗
𝑡 is the 

estimate of 𝑝𝑖𝑗
𝑡 , and Ƹ𝑝𝑖𝑗

𝑡 is the maximum deviation of ҧ𝑝𝑖𝑗
𝑡 . For our robust model, we assume 
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Robust coverage reliability constraint for each demand point 𝑖 ∈ 𝐼 and time period 𝑡 ∈ 𝑇:
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◆ Facility opening constraint for each time period 𝑡 ∈ 𝑇:
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◆ Facility relocation budget constraint and related logical constraints:
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◆ Variable definitions:
𝑥𝑖 , 𝑦𝑗

𝑡 , 𝑧𝑗𝑘
𝑡 ∈ {0,1}

◆ Description of multiple periods: We consider a planning period of one whole year. As 
wind direction distributions are significantly different in Summer (April-September) and 
Winter (October-March) months, these are considered as different periods. For a single-
period formulation, average data of the whole year is utilized.

◆ Analysis is conducted on four types of models: multi-period robust (MP-R) which consider 

uncertainty in 𝑝𝑖𝑗
𝑡 , multi-period deterministic (MP-D) which does not consider uncertainty 

in 𝑝𝑖𝑗
𝑡 , single-period robust (SP-R), and single-period deterministic (SP-D).

◆ Computational Effort: Out of 108 models solved for different parameter combinations, 
104 converged in 2 hours, and all of them converged in 8 hours. Generally, adding more 
time periods is more computationally intensive than adding robustness.

◆ Value of adding multiple periods and robustness: Utilizing a multi-period formulation is 
particularly beneficial when response time thresholds are short, or uncertainty is not 
accounted for. Adding robustness to deterministic formulations is more beneficial for 
single-period formulations or when response time thresholds are longer. Combining 
these different strengths, MP-R improves coverage by 57% compared to SP-D.

◆ Geographical impact: Adding robustness consolidates the facilities towards the densely-
populated urban core, thereby improving reliability outcomes.

◆ Additional considerations: Some of the gap between model coverage (coverage 
promised by the model) and simulated coverage (coverage experienced during Monte-
Carlo simulations) can be reduced by either increasing robustness (also reduces model 
coverage) or increasing the number of opened facilities (has additional associated costs).

◆ SS1: providing 90% coverage reliability in 4 min; SS2: providing 95% coverage reliability in 10 min 

◆ Improvements in coverage reliability (𝑞=15; SS2)

Single Period, Not considering uncertainty (SP-D) Multi-Period, Considering uncertainty (MP-R) (Γ𝑖
𝑡=1)

◆ Extent of facility relocation
SS1

SS2

Multi-Period, Considering uncertainty (MP-R) (Γ𝑖
𝑡=1)

(𝑞=15; SS2) 

◆ Reducing the gap between model coverage and simulated coverage
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