Apr 05, 2013

During Hurricanes Ivan in 2004 and Katrina in 2005, at least 11 highway and railroad bridges along the U.S. Gulf Coast were damaged. When the water rose during the storms, wave forces slammed into the bridges’ supporting substructures, and when it rose high enough, the water’s buoyancy had enough power to lift off sections of a bridge’s superstructure and lay them aside like giant Legos.

To build bridges that can withstand the force of hurricane waves, engineers must be able to estimate the effects those waves will have on bridge structures. An OTREC project led by Oregon State University professor Daniel Cox examined the effects of wave loading on highway bridge superstructures.

Cox and co-investigator Solomon C. Yim, also of Oregon State University, conducted experiments in the Large Wave Flume at the O.H. Hinsdale Wave Research Laboratory at Oregon State University. They used a 1:5 scale, reinforced concrete model of a section of the Interstate 10 Bridge over Escambia Bay, Fla, which failed during Hurricane Ivan.

To see more details about the project, “Hurricane Wave Forces on Highway Bridge Superstructure,” click here, or download the final report.

The problem addressed by this project is that, while...

Read more