Even residents of a gingerbread candyland can't get around with holiday magic alone. After all, Santa's elves still need a reliable way to get from their cozy homes to the workshop.

Sadly, transportation planners have turned a frosty shoulder to sugar-based transit systems. Until now.

On Dec. 3, Portland State University's Students in Transportation Engineering and Planning held the first gingerbread transit station competition. Four teams of students pulled their attention away from human transit to focus on the needs of gingerbread people and misfit toys.

Dealing with building materials of unknown structural properties, students field engineered solutions. Licorice sticks stood in for steel rails, candy canes for bicycle racks. For a binding agent, students mixed cream of tartar and egg whites instead of portland cement.

The resulting transit system has already resulted in fewer traffic gum-ups and a drastic reduction in ultrafine powdered-sugar emissions. Sleigh-travel-time reliability has also improved.

Researchers are now assessing the durability of corn-syrup-reinforced composites in candy bridges, the potential for alkali-silica reaction in gingerbread pavement and the possibility that someone hungry will stumble in and eat the infrastructure.

The winning design team was Transit Wonderland, composed of Jesse Boudart, Sara Morrissey, Mark Haines and Meeyonwoo Lim.

Good transportation decisions rely on good models. Yet, despite advances in transportation modeling, there had been no dedicated training ground for the next generation of modelers. That all changed with the launch of the Oregon Modeling Collaborative Nov. 12. The collaborative will serve as a living laboratory to put the research from some of America’s top modelers into practice across Oregon.

On Nov. 12, we welcomed Peter Appel, administrator of the federal Research and Innovative Technology Administration, to Portland to kick off the collaborative with researchers, practitioners and policymakers from across the Northwest. Appel, confirmed by the U.S. Senate as administrator in 2009, has worked on U.S. Department of Transportation initiatives aimed at getting researchers and professionals to address safety, efficiency and environmental sustainability across all forms of transportation.

Groundbreaking research at the Oregon Transportation Research and Education Consortium has already produced models to account for bicycle trips and greenhouse gas emissions and to predict earthquake risk to highway bridges. However, models don’t do any good if agencies can’t afford the staff time and resources to use them. The Oregon Modeling Collaborative helps fill this gap by educating the next...

Read more

The proliferation of information technology in the transportation field has opened up opportunities for communication and analysis of the performance of transportation facilities. The Highway Capacity Manual relies on rules of thumb and small data samples to generate levels of service to assess performance, but modern detection technology gives us the opportunity to better capture the dynamism of these systems and examine their performance from many perspectives. Travelers, operations staff, and researchers can benefit from measurements that provide information such as travel time, effectiveness of signal coordination, and traffic density. In particular, inductive loop detectors show promise as a tool to collect the data necessary to generate such information. But while their use for this purpose on restricted‐access facilities is well understood, a great many challenges remain in using loop detectors to measure the performance of surface streets.

This thesis proposes 6 methods for estimating arterial travel time. Estimates are compared to simulated data visually, with input/output diagrams; and statistically, with travel times. Methods for estimating travel time are applied to aggregated data and to varying detector densities and evaluated as above. Conclusions are drawn about which method provides the best estimates, what levels of data aggregation can still provide useful information, and what the effects of detector density are on the quality of estimates....

Read more

Watch video

View slides: Bell Presentation (PDF)

Moore Presentation (PDF)

Ma Presentation (PDF)

Summaries: 
Identification and Characterization of PM2.5 and VOC Hot Spots on Arterial Corridor by Integrating Probe Vehicle, Traffic, and Land Use Data: The purpose of this study is to explore the use of integrated probe vehicle, traffic and land use data to identify and characterize fine particulate matter (PM2.5) and volatile organic compound (VOC) hot spot locations on urban arterial corridors. An emission hot spot is defined as a fixed location along a corridor in which the mean pollutant concentrations are consistently above the 85th percentile of pollutant concentrations when considering all other locations along the corridor during the same time period. In order to collect data for this study, an electric vehicle was equipped with instruments designed to measure PM2.5 and VOC concentrations. Second-by-second measurements were performed for each pollutant from both the right and left sides of the vehicle. Detailed meteorological, traffic and land use data is also...

Read more

The video begins at 0:43.

Abstract: Integrated land use transportation models simulate the behavior of the spatial economic system and the interactions between the transportation system and the rest of the economic system. The essential elements of these models are explicit treatment of space in economic production and consumption behavior, both the space that is the physical areas that contain production processes and the space that separates different production locations and gives rise to the demand for travel and transport. They put travel within an economic context, and thus facilitate simulation of the impacts of transportation policy and planning actions and transportation conditions on the wider economic system. As such, integrated models can be used address complex policy questions that more limited transportation models cannot address, or cannot address well.

This seminar will set out the basic scope and form of integrated models and discusses several of the key advantages they provide for planning. Experiences gained in the practical applications of the Oregon SWIM and Sacramento MEPLAN and PECAS integrated models will be described. These experiences will be used to illustrate the added benefits arising with such models in terms of more efficient land use forecasting, more complete analysis of cumulative and indirect impacts and more holistic consideration of policy in general, more...

Read more

Watch video

View slides

Summary: A growing concern related to large-truck crashes has increased in the State of Texas in recent years due to the potential economic impacts and level of injury severity that can be sustained. Yet, studies on large truck involved crashes highlighting the contributing factors leading to injury severity have not been conducted in detail in the State of Texas especially for its interstate system.  In this study, we analyze the contributing factors related to injury severity by utilizing Texas crash data based on a discrete outcome based model which accounts for possible unobserved heterogeneity related to human, vehicle and road-environment. We estimate a random parameter logit model (i.e., mixed logit) to predict the likelihood of five standard injury severity scales commonly used in Crash Records Information System (CRIS) in Texas – fatal, incapacitating, non-incapacitating, possible, and no injury (property damage only). Estimation findings indicate that the level of injury severity outcomes is highly influenced by a number of complex interactions between factors and the effects of the some factors can vary across observations. The contributing factors include drivers’ demographics, traffic flow condition, roadway geometrics, land use and temporal...

Read more

The video begins at 0:16.

Abstract: This seminar will introduce travel models to non-modelers. It will build off the previous seminar, which introduced models in general, and discuss two primary approaches to travel modeling – four-step aggregate models and activity-based disaggregate models. The inputs, basic model methodology, and outputs of each approach will be discussed. An example of each approach will be discussed as well. The goal of the seminar is to introduce key concepts, basic differences between the two approaches, and discuss the benefits and shortcomings of each approach, with a focus on application.

Speaker Bio: Ben Stabler is a supervising planner with Parsons Brinckerhoff who specializes in planning modeling systems development. Ben has worked locally, as well as internationally, on numerous four-step and activity-based travel demand and land use modeling systems and has presented at various conferences, including TRB, the TRB Planning Applications Conference, and the Innovations in Travel Modeling conference. He is a certified GIS Professional and has worked in travel forecasting for Oregon DOT as well as PTV – the makers of VISUM and VISSIM. Ben is a member of the TRB Urban Transportation Data and Information Systems Committee (ABJ30) and is an active member of the Oregon Modeling Users Group.

Transportation mode choice is often expressed in terms of models which assume rational choice; psychological case studies of mode adoption are comparatively rare. We present findings from a study of the psychology of adoption for sustainable transportation modes such as bicycles, car sharing, and mass transit. Case studies were conducted with current and former participants in PSU’s ‘Passport Plus’ transit pass program, as well as a longitudinal cohort study of first-time winter bicycle commuters. Composite sequence analysis was used to construct a theory of the adoption process for these modes. Our findings suggest that mode evaluation is cognitively distinct from mode selection and has different information requirements. We conclude that public and private organizations could improve the adoption rate for these modes by tailoring their communication strategies to match the commuter’s stage of adoption.

View slides

The video begins at 9:01.

Watch video

View Kristi Currans's slides

View Steve Gehrke's slides

Steven Gehrke, Ph.D. Candidate, Portland State University

Topic: An Activity-related Land Use Mix Construct and Its Connection to Pedestrian Travel

Land use mix is a central smart growth principle connected to active transportation. This presentation describes the indicators of local land use mixing and their association with pedestrian travel in Oregon’s Willamette River Valley. It argues that land use mix is a multidimensional construct reflected by the complementarity, composition, and configuration of land use types, which is positively linked to walk mode choice and home-based trip frequency. Findings from this study underline the conceptual and empirical benefit of analyzing this transportation-land use interaction with a landscape pattern measure of activity-related composition and spatial configuration.

Steven Gehrke is a Ph.D. candidate in Civil and Environmental Engineering at Portland State University. His research examines the transportation-land use interaction,...

Read more

Pages