Skip to main content
Home

Main navigation

  • About
    • About TREC
    • Advancing Equity
    • Our Staff
    • Our Researchers
    • Contact Us
  • News
    • Latest News
    • Join Our Mailing List
    • Media Coverage
  • Programs
    • Transportation Data
    • The Initiative for Bicycle and Pedestrian Innovation
    • TREC Resource Hub
    • PacTrans
    • Better Block PSU
    • Workforce Development
    • National Institute For Transportation And Communities
  • Events
    • Upcoming Events
    • Transportation Seminars
    • BikePed Training
    • Summer High School Camp
    • Ann Niles Lecture
    • Past Events
  • Research and Data
    • Research Areas
    • Researchers
    • All Projects
    • Final Reports
    • PORTAL: Portland-Vancouver
    • BikePed Portal: National
    • For Researchers
  • Study at PSU
    • Why Study at PSU?
    • Degrees and Courses
    • STEP Student Group
    • Graduate Research Assistants
    • Scholars
    • Sustainable Transportation Study Abroad
User account menu
  • Log in

Bicyclists’ Uptake of Traffic-Related Air Pollution: Effects of the Urban Transportation System

Principal Investigator:

Alex Bigazzi, Portland State University


Summary:

While bicyclists and other active travelers obtain health benefits from increased physical activity, they also risk uptake of traffic-related air pollution. But pollution uptake by urban bicyclists is not well understood due to a lack of direct measurements and insufficient analysis of the determinants of exposure and ventilation (breathing). This knowledge gap impedes pollution-conscious transpor... While bicyclists and other active travelers obtain health benefits from increased physical activity, they also risk uptake of traffic-related air pollution. But pollution uptake by urban bicyclists is not well understood due to a lack of direct measurements and insufficient analysis of the determinants of exposure and ventilation (breathing). This knowledge gap impedes pollution-conscious transportation planning, design, and health impact assessment. The research presented in this dissertation generates new connections between transportation system characteristics and pollution uptake by bicyclists. The primary research questions are: 1) how do urban bicyclists’ intake and uptake of air pollution vary with roadway and travel characteristics and 2) to what extent can transportation-related strategies reduce uptake. Breath biomarkers are used to measure absorbed doses of volatile organic compounds (VOCs). This research is the first application of breath biomarkers to travelers and the first uptake measurements of any pollutant to include roadway-level covariates. Novel methods to collect and integrate bicycle, rider, traffic, and environmental data are also introduced. See More

Project Details

Project Type: Dissertation
Project Status: Completed
End Date: December 31, 2014
UTC Funding: $15,000

Downloadable Products

  • Bigazzi Dissertation (FINAL_REPORT)
  • Bicycle route preference and pollution inhalation dose: Comparing exposure and distance trade-offs (PUBLICATION)
  • Dynamic Ventilation and Power Output of Urban Bicyclists (PUBLICATION)
  • Roadway determinants of bicyclist exposure to volatile organic compounds and carbon monoxide (PUBLICATION)

 

© 2024 | Transportation Research and Education Center | 503-725-8545 | asktrec@pdx.edu