Navigating an unfamiliar place is uniquely challenging for people with disabilities. People with blindness, deafblindness, visual impairment or low vision, as well as those who use wheelchairs, can travel more independently in urban areas with the aid of effective wayfinding technology. A new report from the National Institute for Transportation and Communities (NITC) explores how to leverage low-cost methods to enable people to more easily move through public, urban indoor and outdoor spaces.

The study, led by Martin Swobodzinski and Amy Parker of Portland State University, used focus groups, two case studies, and an in-person structured wayfinding experience on the PSU campus to find the most helpful ways of getting around. Tactile maps were found to be a very useful resource, with an accessible mobile app also showing promise as an orientation and mobility aid.

The researcher will share more details about this project in a free webinar on December 15: Individual Wayfinding in the Context of Visual Impairment, Blindness, and Deafblindness.

WHY IS THIS RESEARCH IMPORTANT?

Environments and...

Read more

Travel time reliability – or the consistency and dependability of travel times from day to day, and at different times of day – is a key metric that significantly affects people’s travel behavior. Since businesses rely heavily on transportation systems, an unreliable transportation network can also impact the economic competitiveness of urban areas. As such, reliable travel times are important for transportation agencies to promote economic stability within a community. Having accurate methods to evaluate reliability is important for both transportation practitioners and researchers.

A new report from Portland State University offers an improved method for determining the confidence interval of travel time reliability metrics. Researchers Avinash Unnikrishnan, Subhash Kochar and Miguel Figliozzi of PSU’s Maseeh College of Engineering and Computer Science used a highway corridor in Portland, Oregon as a case study to evaluate their method, and found that it compared favorably with other methods of evaluating the confidence interval of travel time reliability metrics.

"Traffic engineers can apply this method to come up with a range of estimates for the unknown true travel time reliability metric. The travel time reliability metrics calculated by traffic engineers and transportation planners will have variability due to factors such as road...

Read more

Researchers Aaron Golub, John MacArthur and Sangwan Lee of Portland State University, Anne Brown of the University of Oregon, and Candace Brakewood and Abubakr Ziedan of the University of Tennessee, Knoxville have published a new journal article in the September 2022 volume of Transportation Research: Interdisciplinary Perspectives

Rapidly-evolving payment technologies have motivated public transit agencies in the United States to adopt new fare payment systems, including mobile ticketing applications. The article, "Equity and exclusion issues in cashless fare payment systems for public transportation," explores the challenges facing transit riders in the U.S. who lack access to bank accounts or smartphones, and potential solutions to ensure that a transition to cashless transit fares does not exclude riders. Learn more about the project and read an open-access version of the final report.

The study asks: who is most at risk of being excluded by the transition to new fare payment systems and how would riders pay transit fares if cash payment options were reduced or eliminated? Researchers answer these questions using intercept surveys of 2,303 transit riders in Portland-Gresham, OR, Eugene, OR, and Denver, CO.

The...

Read more

In order to make sure bicyclists' needs are considered when improving a transportation system, planners and engineers need to know how many people are biking, and where. 

Traditional bicycle counters can provide data for limited sections of the bike network; often these counters are installed at important locations like trails or bridges. While limited in location, they count everyone who bikes by. Meanwhile, GPS & mobile data cover the entire transportation network, but that data only represents those travelers who are using smartphones or GPS. Combining the traditional location-based data sources with this new, crowdsourced data could offer better accuracy than any could provide alone. 

"Knowing how many people are bicycling on a street is really important for a number of reasons. As just a few examples, bicycle volumes give you a way to understand safety data and determine crash rates. They provide insight into where and how bicycle trips are taking place, which can help plan for new or improved facilities," said Nathan McNeil of Portland State University.

Supported by a pooled fund grant administered by the National Institute for Transportation and Communities (NITC), Dr. Sirisha Kothuri of Portland State University led a research project aimed at fusing traditional and...

Read more

How can we use a variety of data-driven speed management strategies to make transportation safer and more efficient for all modes–whether you’re driving, walking or taking transit?

The project was led by Yao Jan Wu, director of the Smart Transportation Lab at the University of Arizona. Co-investigators were Xianfeng Terry Yang of the University of Utah, who researches traffic operations and modeling along with connected automated vehicles, and Sirisha Kothuri of Portland State University, whose research has focused on improving signal timing to better serve pedestrians. Join them on Sept 15, 2021 for a free webinar to learn more.

"We want to improve mobility for all users, be it pedestrians, vehicle drivers or transit riders, and there are different strategies to do this. How do we harness data to drive us to these strategies?" Kothuri said.

Funded by the National Institute for Transportation and Communities (NITC), this multi-university collaboration addressed the question from three angles:

  • Wu and his students in Arizona looked at the impact of speed management strategies on conventional roadways...
Read more
Bicyclists cross an intersection with a bike signal, near a red car
John MacArthur, Portland State University

What if your bicycle could warn you that a car is coming from a side street you can't see? Or let you know that your front tire is getting a little low, or that you're approaching a pothole that wasn't there yesterday? A NITC research project led by John MacArthur of Portland State University explores how connected vehicle (CV) technologies could encourage an increase in bicycling. As CV technology moves forward in the rest of the transportation system—with buses and connected streetcars requesting early green lights from the traffic signals, and cars chatting with each other...

Read more
Cars waiting at a traffic signal
Photo by Canetti
Principal Investigator: Gerardo Lafferriere, Portland State University
Learn more about this research by viewing the Executive Summary and the full Final Report on the Project Overview page.

Automobile traffic congestion in urban areas comes with significant economic and social costs for everyone. According to the 2015 Urban Mobility Report, the total additional cost of congestion was $160 billion. As more people move to metropolitan areas, the problems only intensify. The latest NITC report offers a new approach to urban traffic signal control based on network consensus control theory which is computationally efficient, responsive to local congestion, and at the same time has the potential for congestion management at the network level.

Traffic signals represent a significant bottleneck. As...

Read more
Cyclists riding toward a green bike signal
Principal Investigator: Sirisha Kothuri, Portland State University
Learn more about this research by viewing the Executive Summaries, related presentations, and the full Final Report on each Project Overview page.

Sirisha Kothuri, a Portland State University research associate, has recently completed two distinct studies taking different approaches to advancing bicycle safety. Kothuri will lead a Sept. 13 workshop on Bicycle/Pedestrian Focused Signal Timing Strategies along with Peter Koonce, the division manager of Signals & Street Lighting for the City of Portland. The half-day workshop will be part of Transportation and Communities 2018, a two-day...

Read more

Seleta Reynolds of the Los Angeles Department of Transportation treated attendees of the Ann Niles Active Transportation Lecture to a provocative, entertaining presentation Oct. 6. Reynolds, the head of a 2,000-employee department, offered a perspective on striving for equity in a huge, diverse city.

TREC’s Initiative for Bicycle and Pedestrian Innovation program, or IBPI, Reynolds filled the Billy Frank Jr. Conference Center at the Ecotrust building in northwest Portland Oct. 6. Her presentation ranged from Vision Zero to autonomous vehicles.

The Niles lecture series serves as a legacy to Ann Niles, an advocate for livable neighborhoods in Portland. The lecture also coincided with the kickoff of a two-year campaign to create the IBPI Innovation in Active Transportation Endowed Scholarship, designed to help Portland State attract and retain the best and brightest students.

In Los Angeles, making sure transportation decisions benefit all residents is a constant and evolving challenge, Reynolds said at the lecture. All communities need to be at the table for discussions that affect them. The key, Reynolds said, is to “listen quietly and speak with humility.”

...
Read more

Pages